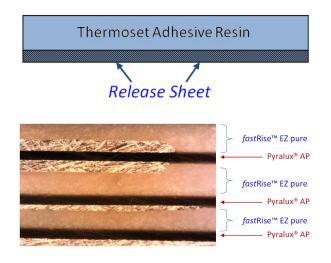


FR-Ezpure

General Processing Guidelines

General Information


fastRise[™] EZpure

fastRise[™] EZpure prepreg uses the flexible fastRise[™] EZ thermoset resin system without the supporting PTFE film. This allows for thinner dielectric spacing and eliminates the processing challenges of PTFE. Performance characteristics and material compatibility are similar to fastRise[™] EZ.

fastRise[™] EZpure will densify approximately 25-30% during lamination. This densification will be a ground plane to ground plane distance, as shown in the table below. When calculating final pressed thicknesses to do an impedance calculation, please consult your technical service or technical sales person for an approximate signal to ground distance.

Unpressed Thickness	Pressed Thickness
1.50 mils	1.17 mils
2.00 mils	1.55 mils
3.00 mils	2.03 mils

Design Note: Due to a lack of film reinforcement to restrict flow, careful consideration must be made with regard to designing two adjacent copper layers separated solely by fastRise[™] EZpure. Z-axis shorts have the potential to occur and AGC recommends thorough testing before proceeding with such a design.

Storage

Store the material in a cool dry area away from direct sunlight and high humidity, avoiding material contamination. fastRise™ EZpure is certified to meet all requirements as agreed upon between the user and supplier for a given shelf life as defined by the storage conditions below.

Storage Conditions

Condition 1 (i.e. refrigeration): <4.5°C (40°F) Condition 2 (i.e. room temp): <23°C (73°F), Relative Humidity <50%

When removing fastRise[™] EZpure prepreg from refrigeration, it should be allowed to acclimate to room temperature in the sealed bag.

This will reduce the chance of moisture condensation on the prepreg and will also provide a more consistent start temperature for the lamination process. Bags should be resealed when not in use.

Shelf Life

If material is stored under Condition 1 above, a shelf life of 180 days after receipt of shipment will apply. If material is stored under Condition 2 above, a shelf life of 90 days after receipt of shipment will apply. AGC will not ship fastRise[™] EZpure material with less than 90 days of remaining shelf life. Packaging will default to indicate shelf life based on storage Condition 2 unless end user notifies AGC that Condition 1 applies. In the event that prepreg expires, please contact your AGC technical representative for assistance to coordinate retesting the expired prepreg.

Solder Mask

Panels should be clean and dry. No other special treatment is required.

Solder Reflow

A pre-bake cycle of 2 - 3 hours at $120^{\circ}C$ [250°F] is recommended prior to thermal stressing. Longer pre-heat times and reduced cycle times may be advantageous depending on design and processes.

Handling

fastRise[™] EZpure resin is cast onto a release sheet and packaged with a slip sheet between each piece. The release sheet should remain in place until just prior to layup. To avoid damaging the resin during removal, best practice is to attach a piece of tape to both the release sheet and the resin, then pull apart. The resin can withstand some flexing and folding without cracking, though to minimize any potential cracking it is advised to handle by at least 2 edges at all times. The surface of fastRise[™] EZpure may be tacky, especially for freshly manufactured material. Although it is recommended to allow refrigerated prepregs to acclimate prior to opening a sealed bag, in some cases it may be advantageous to use the prepreg while it is cool* which will reduce the tackiness of the material and make handling easier.

*do not allow condensation to form on the prepreg

Inner Layer Preparation

Laminate Preparation

fastRise[™] EZpure will bond well to most other materials. Inner-layers should be clean and dry before bonding. Oxide treatments of copper surfaces are recommended. As long as the uncured prepreg hasn't been exposed to moisture or high humidity, vacuum desiccating of the material is not required.

Flow Patterns / Thieving

Solid copper borders, 0.5-1.0" wide, are recommended and have been observed to allow the use of much higher lamination pressures without any negative effects or squeeze out. See Lamination section for more information. For thieving, retaining as much copper in between parts is preferred. Interlocking patterns such as offset diamonds, honeycombs, or other patterns which inhibit resin flow channels are ideal. Interlocking "star burst" flow patterns or other patterns which may promote resin flow channel formation should be avoided.

Baking

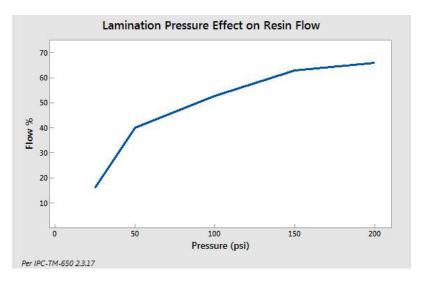
As a general recommendation, fastRise[™] EZpure should be baked after exposure to moisture for 3 hours at 80°C (175°F). This can be substituted with a 1 hour bake at 120°C (250°F). For simplicity in this processing guide, all bake steps will refer to the 120°C process even though they are both acceptable.

Lamination

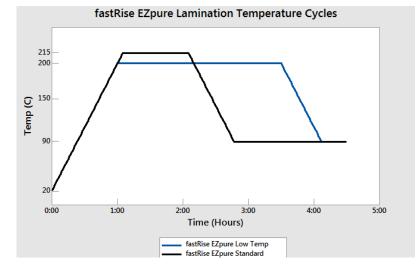
Excessive resin flow should be avoided as it can cause flow channels or other undesirable conditions.

Quick Start

	fastRise EZpure	<i>fast</i> Rise EZpure Low Temp	
Cure Temp / Time	60 minutes at	150 minutes at	
(measured at bondline)	215°C (420°F)	200°C (390°F)	
Pressure	25 – 475 psi		
Flessule	(see Pressure section page 7 for details)		
Heating Rate	2 – 4°C/min (3 – 8°F/min)		
Critical Range	80°C – 150°C (175°F – 300°F)		
Cooling Rate	Less than 3°C/min (6°F/min)		
Breakdown	Breakdown or transfer to cold press when bondline is below 90°C (200°F)		
Vacuum	Full vacuum is recommended through entire cycle		
Vacuum Delay	Hold vacuum 10-20 minutes before applying heat or pressure		
Pressure	25 – 475 psi		
	(see Pressure section page 7 for details)		


Padding and Conformance Materials

Typical padding and conformance materials used for rigid, rigid-flex, or flexible circuit manufacturing can be used (pending temperature ratings of the materials). Press padding (outside separator plates) is recommended. Use of conformance materials such as AGC TacPad, PTFE skive film, clutch lamination, or others are often helpful to balance pressure variations induced from circuits. Clutch laminations are recommended for foil lamination applications and when bonding plated up copper layers to achieve consistent dielectric thicknesses.


Pressure

Excessive pressure should be avoided; it can distort circuit patterns, induce resin/filler separation, or create flow channels.

Full pressure should be achieved before the fastRise[™] EZpure reaches 80°C (175°F). fastRise[™] resin flow has been shown to be directly proportional to lamination pressure and higher pressures can increase resin flow when required. Due to the absence of PTFE film in fastRise[™] EZpure, this product is especially prone to excessive squeeze out at higher pressures. AGC has observed that a solid copper border around the inner layers, combined with the appropriate flow pattern, can prevent squeeze out and allow the application of pressures from 100 psi to as high as 475 psi. Due to this observation AGC highly recommends a solid copper border for all inner layer artwork in order to achieve 100 psi or higher. Absent a solid copper border, AGC recommends as low a pressure as can possibly be achieved (i.e. contact pressure or approximately 25 psi). Approximate % flow vs. pressure for fastRise[™] EZpure is charted below.

Temperature

Resin Flow Window / Critical Range

fastRise[™] resins gel and flow between 80°C - 150°C (175°F – 300°F) and reaches their lowest viscosity between 100°C – 125°C (212°F – 260°F).

Heating Rate

A cold start of the press is desirable. Typical fastRise[™] heating rates are 2°C/min – 4°C/min (3°F/min – 8°F/min). In difficult to fill applications such as heavy copper or high layer count boards, a slow heating rate should be used (2°F/min – 3°F/min). It is also recommended that low heating rates be used if the process is to accommodate tight registration requirements or high layer counts. Past studies have shown that lower heating rates (i.e. <3°F/min) can provide substantial improvements in registration repeatability.

Curing

fastRise[™] EZpure resins cure at a lower temperature than other fastRise[™] part numbers. A standard fastRise[™] heating profile can usually be used where the bondline is held at 215°C (420°F) for a minimum of 1 hour. However, fastRise[™] EZpure can also be cured where the bondline is held at 200°C (390°F) for 2.5 hours. The lower cure temperature can provide some advantages in what release/padding/conformance materials can be used as well as enabling the use of traditional lamination presses designed for FR-4. This also increases compatibility with other low-temperature flexible materials.

Cooling

A slow cool ($<6^{\circ}F/min$) is necessary to avoid any issues associated with delamination. The hot press should be cooled below 90°C (200°F) before transferring to a cold press. In situations where mismatched CTE's may induce delamination or where warping may be an issue, slower cooling rates ($<3^{\circ}F/min$) may provide better results.

Additional Notes

Multiple Ply Constructions

Resin flow can increase when multiple plies of fastRise[™] EZpure are used against each other. If higher-flow is not desired, pressure should be reduced to prevent excess resin flow, resin separation, or formation of flow channels.

Foil Lamination

Foil laminations may be achieved with fastRise[™] EZpure part numbers provided squeeze out and flow are minimized with the use of a solid copper border. In this case, pressures higher than 100 psi may be advantageous to prevent pooling of resin in the center of the panel. Proper conformance materials are critical. Contact a AGC Technical Representative for process and design considerations that must be taken into account before using fastRise[™] EZpure in a foil lamination construction.

Drilling

In most cases, the laminate cores will dictate drilling parameters. The following information is provided as a general suggested starting point where fastRise EZpure is combined with typical low-loss PTFE-based laminates.

Quick Start

	Imperial units	SI units	
Entry Material	Phenolic (0.010" – 0.024")	Phenolic (0.25mm - 0.6mm)	
Backer Material	Rigid Phenolic, Slickback, or comparable		
Cutting Speed (Surface Speed)	100 SFM	30.5 MPM	
Chip Load	0.0010 in	25 μm	
Dwell	0-1000 ms (increase dwell time as speed and chip load deviate from above recommendations)		

Drill Bits

Sharp drill bits are critical to any PTFE drilling; new drill bits should always be used. Undercut drill bits are recommended, but past studies have shown that some drill bit brands may obtain better results using their standard drill bits.

Chip Load

A chip load of 1.0 mil (25.4 µm) is common with fastRise[™] combined with AGC laminates. Increasing the chip load to 1.25 mils (31.8 µm) may provide acceptable hole quality and improved productivity.

Cutting Speed

Drill speeds of 100 SFM (30.5 m/min) or less will usually eliminate drill smear if it is present. The slower speeds allow generated heat to dissipate before smearing PTFE. Drill speed can be increased due to equipment limitations, but added dwell times may become more important.

Dwell Time

If smear is present and ideal cutting speeds cannot be obtained, a 250ms dwell is recommended for initial process setup in order to cool the drill bit between holes. Past AGC studies have shown that hole-wall quality in PTFE materials may improve as dwell times are increased to as much as 1000ms.

Peck Drilling

Peck drilling should be avoided where possible; it has been shown to increase drill bit wear as well as increase process time. Peck drilling may be required in some situations (e.g. bird nesting, hole plugging, chip extraction on thick panels, breaking thin drill bits, etc.). If traditional peck drilling is not used, hole-wall quality in PTFE laminates may be improved with the use of a "clean" peck where the peck depth is set to equal that of the phenolic entry. In this, the entry material will effectively clean the drill bit, retract to clear phenolic debris and cool, and then reenter to drill the hole.

Hit Count

Hit counts can vary widely and are usually determined by the laminates used, panel thickness, and hole size. Hit counts of 100-300 hits per bit are typical for ceramic/PTFE constructions. When paired with unreinforced and ceramic free laminates, little drill wear will take place and hit counts of 700-1000 are not unreasonable. When developing the process, the drill point edges should be periodically inspected to assess the level of drill wear and hit count should be adjusted accordingly.

Entry / Backer Materials

Rigid entry and exit material is usually beneficial in order to remove any debris or deposits from the drill bit. 10-25 mil phenolic entry is acceptable for most applications and 30-50 mil phenolic entry can be used if pressure foot clearance is substantial. Like the entry, rigid backer is usually necessary to prevent burring and aid in obtaining good hole-wall quality. Thick phenolic is typical and lubricated rigid backers such as SlickBack[®] from L.C.O.A.[®] have also been successful.

Coolant Assisted Drilling

Some drilling equipment is now equipped to apply coolant/lubricant to the drill bit during the drilling process. This process has been shown to provide substantial benefit to the drilling process and should be used if available. If available, expect increased chip loads, cutting speed, and improved hit counts.

Plating

fastRise™ EZpure will readily accept any standard electroless copper or direct metallization plating. It is compatible with all copper plating and final finish chemistries.

Laser Drilling / MicroVias

A CO2 laser is recommended for microvia formation in fastRise EZpure. While a UV laser may be used to ablate the surface copper, UV energy directed into the fastRise will tend to leave a blown out microvia geometry instead of one with smooth hole walls and a slight taper. Unchecked, it may also negatively affect the capture pad. If copper foil thickness variation prevents consistent UV/CO2 lasing, higher quality may be achieved by first etching away the surface copper where the microvias are to be formed, then ablating the fastRise EZpure with a CO2 laser only.

Hole Wall Preparation

fastRise™ EZpure does not contain PTFE and therefore does not require an activation step prior to plating. The thermoset adhesive resins can be de-smeared / etched back as directed below.

Desmear

Plasma

If panels have been exposed to moisture, bake the boards at 120°C (250°F) for 1 hour to drive out moisture. Standard FR-4 CF4/O2 desmear processes should then be used. The CF4 cycle time is typically half that of standard FR-4 times because the fastRise[™] EZpure resin system tends to etch back quickly.

Permanganate

A permanganate desmear IS NOT RECOMMENDED if the process contains glass etch chemistry. This is due to the high ceramic content of the fastRise[™] EZpure resin system and will result in excessive etchback. If glass etch chemistries must be used due to other materials in the stack up, consult with your AGC technical service representative for specific process recommendations. Standard permanganate and glass etch baths as a part of the electroless copper process are OK. However, note that this alone will not sufficiently desmear the fastRise[™] EZpure resin. A plasma process as described above is required for good hole wall quality.

Image, Develop, Etch, Srtip

When copper surface preparation is required, chemical cleaning processes are preferred (e.g. microetch); mechanical scrubbing (e.g. pumice scrub) should be avoided due to possible mechanical damage or distortion. Although fastRise[™] EZpure should be resistant to this type of damage, low loss materials typically used in conjunction with fastRise[™] EZpure may not be. Otherwise, standard processing should be used.

Routing / Milling

fastRise[™] EZpure can be successfully machined using standard router bits or end mills. Rigid phenolic entry and a rigid backer should be used. In some cases, adding paper (white paper or craft paper) between the phenolic and the part allows better conformance to surface topography (e.g. circuits, soldermask, etc.) and may reduce burring. For tight tolerances or superior edge quality, a "rough cut" placed 0.005"- 0.010" off the part edge may be run prior to the "finish" cut at the nominal part edge.

These guidelines can provide only basic and reference information for PCB fabricators. Because of different environment, equipment, tooling and so on, in all instances, the user shall determine suitability in any given conditions or applications. For more detailed processing information, please contact with the AGC engineer or sales representative.